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Abstract. It is argued that small-world networks are more suitable than ordinary graphs in modelling
the diffusion of a concept (e.g. a technology, a disease, a tradition, ...). The coordination game with two
strategies is studied on small-world networks, and it is shown that the time needed for a concept to
dominate almost all of the network is of order log(N), where N is the number of vertices. This result
is different from regular graphs and from a result obtained by Young. The reason for the difference is
explained. Continuous hawk-dove game is defined and a corresponding dynamical system is derived. Its
steady state and stability are studied. Replicator dynamics for continuous hawk-dove game is derived
without the concept of population. The resulting finite difference equation is studied. Finally continuous
hawk-dove is simulated on small-world networks using Nash updating rule. The system is 2-cyclic for all
the studied range.

PACS. 64.60.-i General studies of phase transitions

1 Introduction

Hawk-dove (HD) game [1,2] is a two-player game, such
that two strategies, hawk (H) and dove (D), are allowed.
Assume that v is the value of gain, and c is the cost of the
fight. If a H-player plays against a D-player, the H-player’s
payoff (profit) will be the whole gain v, and the payoff of
the D-player will be zero. When two H-players interact,
the payoff of each one will be 1

2 (v − c), but in the case of
two D-players, the payoff of each of them will be v

2 . This
is summarized in a matrix called payoff matrix as follows,

H D
H v−c

2 v

D 0 v
2

. (1)

Every player tries to improve his (her) payoff. Max-min so-
lution of von Neumann et al. [3] is a method to determine
which strategy will give the best payoff. The minimum val-
ues of the rows of the payoff matrix are calculated. The
strategy which gives the maximum of those minimum val-
ues is the max-min solution. For 0 < c ≤ v, the solution is
to adopt hawk policy. But, if c > v > 0, the solution is to
follow dove policy. Maynard Smith [1] has shown that this
solution is not evolutionary stable since a mutant adopt-
ing hawk policy will gain so much that it will encourage
others to adopt hawk policy. This will continue till the
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fraction of hawk’s P becomes large enough to make the
payoffs of both strategies equal. Thus

P =
v

c
·

Consider a 1-dimensional chain of players, each player is
allowed to change his (her) strategy according to certain
updating rules. In this work Nash updating rule was used.
It is defined as follows,

Definition 1. If the player’s payoff is larger or equal to
every one of his (her) nearest neighbors (NN), then pre-
serve the strategy, else follow the strategy of his (her) NN
with the highest payoff. If there are more than one neigh-
bor with the highest payoff, choose one of them randomly.

In the above defined game every player may be either
H or D. This can not be found in reality. So a continuous
HD game [4], where each player is considered a hawk with
a certain degree x ∈ [0, 1], and dove of degree 1 − x is
introduced, where x = 0(1) means that the player is a
dove (hawk). This is similar to fuzzy set theory.

In most social networks it is observed that people in-
teract within a close circle of acquaintances where most of
one’s friends are themselves friends of each other. Some-
times a person has a friend away from this circle. When
this is modelled as a network then sites are arranged
in a circle with some long-range edges which are typi-
cally called shortcuts. Each player interacts with both his
(her) NN and shortcut neighbors. This network is called
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small-world network (SWN) [5,6]. So, SWN are more re-
alistic than both regular and random networks.

In this work we study the diffusion of a concept on
SWN. Also, CHD game is studied on SWN. The power
law-exponential transition observed in financial price data
is explained using SWN.

2 Diffusion in social network using SWN

We begin by studying the diffusion of a concept (e.g. a
technology, a disease, a tradition, etc.) on SWN according
to the following rule: Assume that the population occupies
the sites (vertices) of a SWN. If at time t, a site has one of
its NN (whether a local or a shortcut neighbor) adopting
the concept, then the site will adopt it at time t + 1 and
henceforth. It will be show that, in agreement with [7],
the number of the concept followers will initially grow as
a power law, then it will grow exponentially. Consequently
the time needed for the concept to diffuse throughout al-
most all of the SWN is of order log(N), where N is the
number of vertices in the network. For a regular graph
the time needed is a power law of N, thus the diffusion on
a SWN is much faster than diffusion on a regular graph.
Assume that the speed of the spread of the concept is
unity and let ϕ be the fraction of shortcuts hence 2ϕ is
the density of shortcut-ends in the graph. The number of
infected persons will grow initially as a sphere with sur-
face Γdt

d−1, where Γ1 = 2, Γ2 = 2π, Γ3 = 4π and so
on. This is called the primary sphere. Once a shortcut is
reached (the probability of such an event is 2ϕΓdtd−1 per
time unit) a secondary sphere forms and so on. Hence the
total number of infected persons is given by

V (t) = Γd

∫ t

0

τd−1 [1 + 2ϕV (t− τ)] dτ. (2)

Defining Ṽ = 2ϕV, t̃ = t[2ϕΓd(d − 1)!]1/d, and differenti-
ating d times with respect to t̃ one gets

∂dṼ

∂t̃d
= 1 + Ṽ ,

whose solution is

Ṽ (t̃) =
∞∑
i=1

t̃di

(di)!
· (3)

In 1-dimension (1D), one has Ṽ (t̃) = exp(t̃) − 1 and in
2D, Ṽ (t̃) = cosh(t̃)− 1. For t̃ < 1, the number of infected
persons grow as a power law t̃d/d!, while for t̃ > 1, it
grows exponentially. The transition occurs at t̃ = 1, i.e.
at t = [2ϕΓd(d− 1)!].

Now consider the coordination game with two strate-
gies A and B, where A represents (without loss of gen-
erality) the new concept diffusing on SWN. The payoff
matrix is

A B
A a 0
B 0 b

,

where a > b > 0. Define nA(nB) to be the number of NN
and shortcut neighbors of a given player adopting the A
(B) strategy, respectively.

Theorem 1. In the above coordination game if nA ≥
nB for a given A-player, then he (she) will not change his
(her) strategy.

Proof. The payoff of the A-player is anA. If he (she)
changes to B-strategy his (her) payoff becomes bnB. But
nA ≥ nB, a > b thus the player will not flip to the
B-strategy.

Definition 2. A graph S is r-close knit, if ∀ S1 ⊆
S, S1 6= Φ then e(S1,S)P

i∈S1
Zi
≥ r, where e(S1, S) is the num-

ber of edges joining S1 and S, and Zi is the number of NN
including shortcuts of site i.

Define

Z = max
i
{Zi : i ∈ S}.

Theorem 2. A SWN is r-close knit graph with r = 1
Z .

Proof. To minimize r in a connected SWN choose S1 to
consist of a single site (say i) at the end of a shortcut and
choose S to be the two sites of the shortcut {i, j} plus the
NN of j. Thus e(S1, S) = 1 and

∑
i∈S1

Zi = Zi ≤ Z. Thus
e(S1,S)P
i∈S1

Zi
≥ 1

Z .

Now one can understand why the result that the time
needed for the concept to dominate a SWN is proportional
to log(N) differs from the one obtained by Young [8] that
the time needed to dominate r-close knit graph is inde-
pendent of N . In Young’s proof, it has been assumed that
1
2 > r > b

(a+b) , where a and b are the nonzero elements
of the payoff matrix of the aforementioned coordination
game. But in SWN it has been proved that r = 1

Z , which
depends on the topology of the graph and not on the pay-
off matrix. Therefore Young’s result is not valid on SWN.
We believe that SWN is more realistic than a graph sat-
isfying Young’s criterion.

3 Continuous hawk-dove game
and an associated dynamical system

As has been noticed by Wahl and Nowak [4] continuous
games are more realistic than ordinary ones. The payoff
of a player with degree x playing against a player with
degree y is given by,

Π(x, y) =
1
2

(v − c)xy + vx(1 − y) +
v

2
(1 − x)(1 − y).

(4)

Now what is the function y(x) which maximizes the payoff
Π(x, y(x)), and conversely what is the function x(y) which
maximizes Π(y, x(y)). To obtain y(x), we set dΠ(x,y(x))

dx =
0 and solve the resulting differential equation and finally
obtain

y(x) =
v
cx+ C1

x+ v
c

,
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where C1 is a constant of integration. This gives the fol-
lowing dynamical system associated to CHD game

yt+1 =
v
cxt + C1

xt + v
c

, xt+1 =
v
c yt + C2

yt + v
c

· (5)

To satisfy the constraints xt, yt ∈ [0, 1] ∀ t then

v

c
≥ C1, C2 ≥

(v
c

)2

. (6)

It is interesting to notice that unless the condition C1 =
C2 =

(
v
c

)2 is satisfied, the evolutionary stable solution
xt = yt = v

c is unattainable. A similar situation has been
observed before [9]. The steady state of equations (5, 6) are

x =
1

4 vc
[−(C1 − C2) + b],

y =
1

4 vc
[(C1 − C2) + b], (7)

where

b =

√
(C1 − C2)2 + 8

(v
c

)2

(C1 + C2).

The corresponding eigenvalues are

λ± =
d

(x+ v
c )(y + v

c )
,

d =

√(
C1 −

(v
c

)2
)(

C2 −
(v
c

)2
)
.

The steady state (7) is stable if and only if

1
2

(C1 + C2) +
(v
c

)2

+
b

2
> d.

Define α = C1 − C2, β = C1 + C2 and

h(α, β) =
1
2
β +

1
2

(v
c

)2

+
b

2
− d.

Then stability of equation (7) is equivalent to proving
h(α, β) > 0. It is direct to see that

∂h

∂α
=

α

(2b)
+

α

(2d)
,

since b > 0 and d > 0 then for α ≥ 0, h is a strictly
increasing function of α i.e.

h(α, β) > h(0, β) = 2
(v
c

)2

+
v

c

√
2β > 0.

Also using h(α, β) = h(−α, β), then h(−α, β) > 0. Thus
we have

Theorem 3. The system (5) and (6) has a unique steady
state (7), which is asymptotically stable.

4 Replicator equation of CHD game

Replicator equation [9,10] is usually associated to popu-
lation dynamics, where a fraction xi ∈ [0, 1] of the popu-
lation adopts strategy i. The evolution of xi is described
by the replicator equation

xi(t+ 1) = xi(t)
(Ax(t))i + C1

xAx+ C1
, (8)

where A is the payoff matrix of the game and C1is a large
positive constant to ensure that both the numerators and
denominators of equation (8) are positive.

For continuous games, one can form replicator dynam-
ics without the need of the population concept as follows:
Let a player with hawk degree x plays against an oppo-
nent with degree y, then the evolution of x(t) and y(t) can
be described by

x(t+ 1) = x(t)

(
A

[
y

1− y

])
1

+ C1

xAy + C1
,

y(t+ 1) = y(t)

(
A

[
x

1− x

])
1

+ C2

yAx+ C2
, (9)

where x = [x, 1 − x], y = [y, 1 − y], and A is the payoff
matrix of the hawk-dove game. For the symmetric case
C1 = C2, x(t) = y(t), then

x(t+ 1) = x(t)
1
2 (v − c)x(t) + v(1− x(t)) + C1

xAx+ C1
· (10)

The steady states are x = 0, 1, vc and only x = v
c is asymp-

totically stable.
In the previous study full rationality is assumed i.e. the

players are assumed to know the payoffs both for them and
for their opponents and that they do not make mistakes.
This is not realistic so in the following bounded rationality
will be assumed. Let w (1 ≥ w > 0) be a measure of
rationality e.g. w = 1 is a fully rational player and that
1−w is the probability of making mistakes. Then discrete
replicator equation can be modified into:

xi(t+ 1) = (1− w)xi(t) + wxi(t)
[Ax(t)]i + Ci
xAx+ Ci

· (11)

Applying (11) for the symmetric CHD game, one gets
the steady states x = 0, 1, vc (which was expected since
bounded rationality, equation (11) does not change steady
states) and that ∀ 1 ≥ w > 0, then only x = v

c is asymp-
totically stable.

Finally we have simulated CHD on SWN with N =
10 000, and 5% shortcuts. The games run for 100 000 time
steps. Nash updating rule was used. Each player plays
against his (her) NN and shortcut ones, if found. We set
v = 1 and the values of c ∈ [1, 10] were varied with step
0.01, then the average of the degree of “hawkish” behav-
ior x is calculated and compared with the noncontinuous
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value v
c . In this game, x decays very slowly than the non-

continuous game which decays as v
c . The behavior of x as

a function of c is studied. At the beginning, there is some
fluctuations, then the system become 2-cyclic for all the
studied range of c. But the two values are very close to
each other.

5 SWN and financial price data

Recently [11] a model has been proposed to explain the ob-
served power law-exponential transition of financial price
data vs frequency of trading. The main idea is that infor-
mation about a certain commodity diffuses so that those
who have been informed either all buy or all sell. Ran-
dom graph has been used in their study. It has been ar-
gued here that SWN is more realistic in modelling such
effect, so we assume that the network connecting the pop-
ulation of potential buyers is SWN, and show that the
observed behavior can be explained. Using the comments
after equation (3), the cluster (number) of informed per-
sons grows initially as a power law then it grows expo-
nentially i.e. the cluster size s(t) ∝ tβ if t < t1, and
s(t) ∝ exp(t) if t > t1 for some constant t1. The price
returns R(t) are defined by R(t) = ln

[
p(t)
p(t−1)

]
, where

p(t) = p(t− 1) exp(as(t− 1)), where a is a constant. Thus
one has

R(t) ∝ tβ if t < t1 and R(t) ∝ exp(t) if t > t1. (12)

This explains the observed transition of the returns from
power law behavior to an exponential behavior.

We thank the referee for his helpful comments.
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